
MATH 551: HOMEWORK LIST

1. Problems on Riemannian metrics

(1) Consider the smooth map

f : D→ R3

(u, v) 7→ (u, v,
√

1− u2 − v2)

where D is the open unit disk in R2. Calculate the Gram matrix

of the pullback metric f ∗gR3 with respect to the basis { ∂
∂u
, ∂
∂v
}.

Here, gR3 is the Euclidean metric on R3. Let (r, θ) denote polar

coordinates on an the subset U ⊂ D consisting of (u, v) ∈ D
such that (u, v) > 0. Compute the Gram matrix of f ∗gR3 with

respect to the basis { ∂
∂r
, ∂
∂θ
}.

(2) Consider the smooth manifold H2 := {(x, y) ∈ R2 | y > 0}.
Equip H2 with the Riemannian metric

dx2 + dy2

y2
.

This Riemannian manifold is called the Hyperbolic plane.

• Compute the length of the curve γ(t) = (0, t) for 0 < a ≤
t ≤ b <∞.
• Express (x, y) ∈ H2 in complex coordinates as z = x + iy.

Show that the group of invertible linear transformations

SL(2,R) with determinant one acts on H2 via fractional

linear transformations:

z 7→ az + b

cz + d

where (
a b

c d

)
∈ SL(2,R).

• Show that SL(2,R) acts on H2 by isometries.

(3) (This exercise assumes some exposure to differential forms) Let

Ωp(M,R) be the space of smooth differential p-forms on a smooth

manifold M.
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• Show that a Riemannian metric g on M is equivalent to

an isomorphism φg : Γ(TM)→ Ω1(M,R) such that for all

X, Y ∈ Γ(TM),

φg(X)(Y ) = φg(Y )(X),

φg(X)(X) ≥ 0.

Here, Γ(TM) is the vector space of smooth vector fields on

M.

• Show that the Riemannian metric g induces a smoothly

varying inner product on Ωp(M,R).

2. Connections and covariant derivative

(1) Consider Rn with the standard Euclidean metric gRn .

• Show that, with respect to Euclidean coordinates, all Cristof-

fel symbols of the Levi-Civita connection vanish.

• In the case of n = 2, compute all Christoffel symbols of the

Levi-Civita connection of gR2 with respect to polar coordi-

nates on the upper right quadrant.

(2) Consider the hyperbolic plane H2 from exercise 1.2. Compute

all Cristoffel symbols of H2 with respect to Euclidean coordi-

nates.

(3) Consider the vector X0 := ∂
∂x

at the point (0, 1) ∈ H2. Compute

the parallel transport of X0 along the curve γ(t) = (0, t) where

1 ≤ t ≤ 20.

(4) Let (M, g) be a Riemannian manifold and X, Y ∈ Γ(TM)

smooth vector fields. Pick p ∈ M and let γ : [0, 1] → M be

a smooth curve in M such that γ(0) = p and γ̇(0) = X(p). Let

Pγ(t) : TpM → Tγ(t)M be the parallel transport map associated

to the Levi-Civita connection. Show that,

(∇XY )(p) =
d

dt
P−1
γ(t)(Y (γ(t)))|t=0.

This is the sense in which the covariant derivative is the in-

finitesimal form of parallel transport. The covariant derivative

measures the first order failure of a vector field to be parallel in

a particular direction.

3. Geodesics and completeness

(1) Let (M,g) be a Riemannian manifold. Prove that every p ∈ M
has a strongly convex neighborhood. That is, there exists a

neighborhood U of p such that for all x, y ∈ U, there exists
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a length minimizing geodesic γ joining x and y such that the

interior of γ is contained in U.

(2) Let (M, g) be a Riemannian manifold such that the isometry

group Isom(M, g) acts transitively on M. That is, for all x, y ∈
M there exists an isometry f ∈ Isom(M, g) such that f(x) = y.

Show that (M, g) is a complete Riemannian manifold.

(3) Consider R2 with the Riemannian metric

g =
dx2 + dy2

(1 + x2 + y2)2

Find all the geodesics of this metric which pass through the

origin. Can you use this to find all the geodesics? Hint: What

are the isometries of g?

(4) Consider the Lie group SU(2) defined as,

SU(2) := {A ∈M2(C) | AAT = I, det(A) = 1}.

• Show that the tangent space at the identity element can

be identified with the space of all traceless skew-Hermitian

matrices; namely the 2× 2 complex matrices of zero trace

satisfying A = −AT .
• Conclude that the tangent space at h ∈ SU(2) can be

identified with 2 × 2 matrices Q such that h−1Q is tan-

gent to the identity. This gives a canonical trivialization

TSU(2) = SU(2)× Te(SU(2)).

• Define a pairing on tangent vectors at the identity by g(A,B) =

−trace(AB). Show that this defines an inner product on

the tangent space at the identity. Use the action of SU(2)

on itself by left translation to extend it to a Riemannian

metric on all of SU(2).

• A one parameter subgroup of SU(2) is a group homomor-

phism φ : (R,+)→ SU(2). Show that all geodesics through

the origin with respect to the above Riemannian metric are

given by one parameter subgroups.

4. Curvature

(1) This problem is a continuation of the problem about SU(2)

above. Let A,B ∈ Te(SU(2)) be traceless, skew-Hermitian ma-

trices which are orthonormal with respect to the Riemannian

metric g. Show that the sectional curvature of the two plane
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spanned by A,B is given by

1

4
‖[A,B]‖2 = 1.

Here, [A,B] is the commutator of matrices. Conclude that

SU(2) has constant sectional curvature.

(2) Suppose (M, g) is a 3-dimensional Riemannian manifold and

there exists λ ∈ R such that Ric(g) = λg. Prove that g has

constant sectional curvature.

(3) Let (M, g) be a Riemannian manifold and λ > 0. Define a new

Riemannian metric by gλ = λg. Compute the Cristoffel sym-

bols, Riemann curvature, sectional curvature, Ricci curvature

and scalar curvature of gλ is terms of the associated quantities

for g.


